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Abstract—A numerical analysis to determine the heat-transfer parameters of a fluid flow rejecting heat to
the surrounding medium by convection and radiation is developed. The influence of axial conduction is
included and the velocity profile is taken as nonuniform in the transverse direction. Use of a
transformation eliminates the required boundary conditions at infinity. Approximate numerical
techniques are employed to solve the nonlinear conjugate problem. As Péclet number increases, the
temperature fields simplify to those where axial conduction is excluded. The computed results indicate
that the effects of axial conduction are strongly altered by the parameters responsible for the convection
and radiation. Bulk fluid temperatures, wall heat fluxes and Nusselt numbers are plotted against Graetz
numbers. Critical Péclet numbers for a variety of cooling conditions are presented using the bulk fluid
temperature as a reference.

NOMENCLATURE Elocals  COMVETgENCE Criterion ;
A* B*, coefficients in equation (13); n, normalized axial distance in
Bi,  Biot number, hR/k; equation (12);
D, tube diameter [m]; a, Stefan—Boltzmann constant
G,, Graetz number, z/RPe; [W/m*K*].
h, external convection coefficient )
[W/m?C]; Subscripts
K, internal convection coefficient a, convection sink;
[W/m?*°C]; b bulk ;
k, fluid thermal conductivity [W/m°C]; c, critical ;
K, transformation constant in equation (12); e, entrance ;
L, number of axial increments ; i, value at the axial position;
M, number of radial increments; Js value at the radial position;
N, number of equations, M x L; i,J, value at the node;
Nu, Nusselt number, h'D/k; L, local;
Pe,  Péclet number, sDv,, /k ; s, effective radiation sink ;
q, heat flux; w, wall;
Q, dimensionless heat flux, gR/kT,; 0, origin.
r, radial distance [m];
r, normalized radial distance, 7/R; INTRODUCTION
R, tube radius [m]; THE CONTRIBUTION of axial heat conduction plays a
s, volumetric heat capacity [kJ/m*°C]; significant role in the analysis and design of heat-
Sk,  Stark number, e6RT>/k; transfer equipment using low Péclet number fluids.
T, absolute temperature when radiation Although there is an extensive literature dealing with
is present [°K]; this particular problem, its mathematical repre-
U, normalized temperature, T/T,; sentation had not been established with certainty
v, velocity [m/s]; until recently. The apparently conflicting trends of
v,  mean velocity [m/s]; the initial studies are summarized and examined in a
z, axial distance [m]. publication by Hennecke [1] in 1968. He stated that
the problem cannot be formulated by simply adding
Greek symbols the axial conduction term to the energy equation
g, tube emissivity ; while using a semi-infinite duct with a uniform inlet

temperature. This dilemma is attributed to the fact
that the unrealistic boundary condition at the origin
z = 0 negates the conduction of heat upstream of the
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entrance point. Therefore, since the temperature at
z=01is not known a priori, it is necessary to employ
the geometry of an infinite duct where the tempera-
ture is constant at z = —oo. Thus, a complete
solution of the properly posed problem requires
additional consideration of the energy equation. This
modification adds drastic computational difficulties
to the solution of the problem.

Utilizing a finite difference procedure Hennecke
[1] solved the governing energy equation for a
Poiseuillian flow through circular tubes in the
infinite region — oo < z < 0. His numerical results
are applicable for two different sets of thermal
boundary conditions, i.e. the uniform wall tempera-
ture and the uniform heat flux. Both conditions show
the customary discontinuities at the origin. The
distorted temperature profiles are illustrated in a
group of curves assessing the importance of the axial
conduction phenomenon.

Subsequent publications related to this problem
have been concerned basically with different math-
ematical treatments involving variations of the
same boundary conditions used in [1]. Jones [2—4]
presented a theoretical solution based on the
application of a two-sided Laplace transform and
obtained both the upstream and downstream tem-
perature fields. Two separate cases dealing with
boundary conditions of the first and second kind
were investigated. Deavours [5] found an exact
solution for the temperature profile of a fluid flow
between parallel plates. One semi-infinite portion of
the plate walls is maintained at a fixed temperature
while the other is maintained at a different fixed
temperature.

A mathematical scheme for solving the convection
problem with a step change in wall heat flux at z =0
was devised by Hsu [6, 7]. The scheme consists in
matching the temperature distributions calculated
for the regions z<0 and z>0 respectively. To
accomplish this process the Gramm-Schmidt ortho-
normalization technique was employed. For the
case of flow inside a circular pipe the scheme yields
Nusselt numbers that agree with those reported in
[1]. An analytical procedure equivalent to that of
Hsu was presented by Davis [8] for the situation of
fixed heat flux at the walls. The solution was
expressed in terms of the confluent hypergeometric
function. Pearson and Wolf [9] examined the
situation of a three zone channel formed by two
infinite planes. The walls of the inlet and exit zones
are adiabatic but the central zone has an axially-
dependent heat flux. They obtained numerical ap-
proximations developed through the application of
finite element methods. Smith et al. [10] extended
the system considered in [6] and accounted for
internal energy sources. The wall heat flux varies
around the circumference but is unaltered in the
axial direction except for a single discontinuity. A
series solution exploits the orthogonality relationship
among solution components.

The following investigators employed a different
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set of thermal boundary conditions. Michelsen and
Villadsen [11] analyzed the problem of heat transfer
for Poiseuille flow under the assumption that the
tube wall is kept insulated upstream of the origin
and at a constant temperature downstream. The
partial differential equation was solved by a method
based on a combination of orthogonal collocation
and matrix diagonalization. The model of plug flow
was used by Jerri and Davis [12] to show that the
problem given in [11] can be solved by applying the
generalized sampling theorem. As a result, it pro-
vides a relation for the coefficients of the temperature
fields in the two domains. Sorensen and Stewart [13]
reformulated the situation presented by [9], but in
this case, the central segment of a circular duct was
maintained at a constant temperature. Approximate
solutions for the temperature profile were obtained
through the use of a collocation procedure. A
numerical solution that avoids the boundary con-
dition at infinity was developed by Verhofl and
Fisher [14]. The inverse-tangent transformation
converts the axial boundary conditions into coor-
dinates located at finite distances from the origin.
Constant-wall-temperature and insulation constant-
wall-temperature cases were investigated.

All of these investigations [ 1-14] have contributed
to the qualitative description of the Graetz problem
accounting for longitudinal conduction. It is interest-
ing to note that linear thermal boundary conditions
imposed on the walls have been limited to situations
involving constant temperature and constant or
position-dependent heat fluxes. Examination of the
literature shows that there are fields of application
where these simple thermal boundary conditions do
not apply [15]. Therefore, it suggests a need for a
better understanding of the heat transfer encoun-
tered when more general conditions are essential. It
is important to mention that the case of constant
temperature is valid only when the tube flow is
exposed to a high intensity of external forced
convection. However, for intermediate external con-
vection, heat transfer calculations made previously
are not related to low Péclet number Afluids.
Moreover, increases in operating temperatures have
reached the point where the heat flux levels are not
adequately described by convection alone. Under these
circumstances, convective-radiative boundary con-
ditions need to be used. Here again, heat-transport
calculations have been restricted to flows where the
axial conduction is absent.

The present work solves the laminar convection
problem including the effects of axial fluid con-
duction. General thermal boundary conditions ac-
counting for the simultaneous role of convection and
radiation downstream of the origin are employed.
The upstream part of the origin is maintained
insulated. Solutions are obtained by solving numeri-
cally the partial differential equation governing the
resulting nonlinear conjugate problem. The implicit
formulation gives rise to a system of nonlinear
algebraic equations. This system is solved by the
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combined use of the Gauss-Seidel and
Newton—Raphson iterative techniques. Heat-transfer
parameters evaluated from the present study are
compared with limiting results in order to test the
generality of the model. In the presentation of
results, the influence of thermal radiation and
external convection on the axial conduction are
examined in detail.

PHYSICAL FORMULATION

The analysis is based on a fully developed laminar
flow of a viscous fluid with axial conduction in a
circular tube. The upstream part of the tube from z
= ~o0 to z=0 is insulated while its downstream
part from z =0 to z= oo is allowed to exchange
heat with the surroundings. This exchange occurs by
a combined mechanism of radiation and convection.
The incompressible fluid with constant properties
enters the tube at z= —oo having a uniform
temperature T,. The heat flux at the wall surface is
zero for z<0, and at the origin there is a step change
in heat flux becoming nonlinear for z>0. Referring
to the coordinate system shown in Fig. 1, the
temperature distribution for —wo<z<oo is de-
termined by solving the energy conservation equa-
tion for the fluid

s oT __52T+16T T
Wz v T
where the Hagen—Poiseuille velocity profile is ex-
pressed by

1)

v/20,, = 1 — (r/R)%. @

The appropriate boundary conditions for the
conjugate problem are

T=T, z=-0,0<r<R 3)
oT
— =0 z<0,r=R 4)
or
oT
=0 -—w<z<o0,r=0 ()
or
oT 4 4
—k—-=hT=T,)+ea(T*~T*) z20,r=R(6)
r
aT
——— = z=oo,0€rSR. (7)
Jz

It is known that the uniform temperature boundary

condition at z=0 is physically unrealistic for
situations involving axial conduction. According to
investigations by Hennecke [1] and Michelsen and
Villadsen [11], the heat conducted upstream of z =0
is significant when Pe = 50 and 20 for constant wall
temperature and constant wall heat flux respectively.
Therefore, for these situations the phenomenon of
axial heat conduction is dictated by a single critical
value of the deciding parameter Pe. However, a
completely different state of affairs occurs when the
upstream conduction is affected by the simultaneous
presence of convection and radiation in the down-
stream region. For this general case, the critical
values of the Péclet number are strongly affected by
the combination of external convection, radiation
and the temperatures of the convective and radiative
sinks respectively. Equation (6), written for a general
case of coupled heat flow, reduces to the particular
cases of either constant wall temperature or constant
wall heat flux in the downstream region [1-8,
11-14]. Since in general the sink temperatures are
different, equation (7) permits the calculation of the
corresponding equilibrium temperature at z = oo.
The equilibrium temperature at this location is
independent of the hypothesis of axial conduction.

The temperature solutions of equations (1)-(7)
permit the computation of certain thermal quantities
of practical interest. First, the bulk fluid temperature
is defined as

Tordr

[ime
L

Meanwhile, the wall temperature T,, introduced in
equation (6) permits the direct evaluation of the wall
heat flow

Gw =MT,~T)+eo(T2-T*) zz20.
& 5

T ®)

vrdr

©)

Consequently, the expression for the Nusselt number
may be written in terms of ¢,, as follows

_hD D

Nu = v

=T 2 .30
¥ k(L-T,) °

(10)

where i’ denotes the internal convection coefficient.
By introducing the normalized variables v’ = r/R,
U =T/T, and the Péclet number Pe = sDy, /k the
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energy equation (1) becomes

oU U 1oU U

Pe(1—rF*)R— = e R,

el =r")R oz ot ror az?

To complete the set of dimensionless variables in

equation (11), the axial position z will be transfor-
med according to the relation employed in [14]:

(11)

_1 tan~ ! £
= KR

(12)

where K is a transformation constant. This manipu-
lation has the advantage that not only the new axial
position is dimensionless; but more important, the
boundary conditionsat z = + o0 are now converted to
finite locations at n = +0.5. The role of this
transformation is especially significant when numerical
methods are attempted. Using the chain rule for
derivatives and after rearranging terms, equation (11)
may be rewritten in the following form

U 89U 1au 2y
UYL LU g T )
oy ot ror on
where
cos?(nn) sin (2n)
*= 22 U] pe(l —p )4
A Xr e(l—r*)+ X
and
e - costmn).
(Km)?

Likewise, the boundary conditions are expressed
as

U=1 n=-050gr«l (14)
U
ia«—-;=0 —05<y<0,r =1 (15)
ar
U t
g—;—:O —05<y<05,r =0 (16)
ar
oU
—-5—,=Bi(U—Ua)+Sk(U4—U;‘)
¥
005, =1 (I7)
f35}—:0 n=050<grgl. (18)
on

The existence of the axial conduction term and the
presence of variable coefficients in equation (13),
combined with the nonlinear boundary condition of
equation (17) imply that exact mathematical tech-
niques are not amenable. Therefore, the temperature
field will be computed via the calculus of finite
differences.

In terms of the adopted normalized variables, the
expression for the fluid bulk temperature becomes

Ub=4jwn-wﬂumf ~0.5<n<0.5. (19)

0

This equation is integrated by numerical procedures
using Simpson’s rule. Next, the wall heat flow can be
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obtained from the relation
Q. Bi(U,- U+ Sk(Ut—U?)
Q..  Bi(1-U,)+Sk(1-U})
Finally, the Nusselt number is rewritten as follows
_2[BiU,,~ U )+ SkiUs - U%y]
U, = (U—U.)

n=0. (20)

n20. (21)

COMPUTATIONAL METHOD

The finite-difference formulation of equation (13)
along with the associated boundary conditions,
equations (14)-(18) were solved numerically on a
digital computer. It is known that the energy
equation accounting for axial conduction effects is
classified as elliptic. Hence, its representation in
difference form is carried out by means of the implicit
technique. Consequently, a system of nonlinear
algebraic equations is generated due to the
convection-coupled radiation boundary condition in
the downstream region.

The tube was divided into rectangular cells, and
the radial and axial divisions being designated by Ar’
and An respectively. The subindices i and j are
assigned to the radial and axial directions re-
spectively. Using this notation, the central difference
analog is utilized for the conversion of all derivatives
appearing in equations (13)-(18).

Therefore, a nonlinear system of equations consist-
ing of N=MxL equations is generated. The
numerical approach employed for its solution is
based on the Gauss—Seidel method and the
Newton—Raphson method. The accuracy of the
iteration procedure was influenced by three factors:
the convergence criterion g, the grid size M x L
and the transformation constant K given by equa-
tion (12). Using limiting cases for the physical
problem, it was possible to arrive at the numerical
values of g, M xL and K that assure reliable
results. The cases tested correspond to combinations
of low axial conduction (Pe = 30) or high axial
conduction (Pe = 1) with high cooling levels (Bi
= 20 and Sk = 10} or low cooling levels {Bi = 1 and
Sk = 1). The selected value for ¢, corresponds to a
small change in each nodal temperature between two
consecutive iterations and is given by g, <0.001%;,.

For Pe =1 and Bi =20, Sk = 10 the calculated
results do not exhibit appreciable discrepancies using
grid sizes of 10 x40, 20 x 40 and 10 x 60 respectively.
On the other hand, for Pe = 30 with the same
cooling conditions, good convergence is achieved for
a grid of 10 x 60 only. Consequently, a grid with 10
radial intervals and 60 axial intervals along with a
local convergence criterion ¢y, = 0.001°% seemed to
yield accurate results for computation purposes.
These quantities are used to determine an approp-
riate value for the transformation constant K. When
K =0.2 and 1.0, Fig. 2 reveals that minor variations
of wall temperatures take place in the neighborhood
of G, = 0. It is also observed that the variations tend
to disappear at points distant from the origin.
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FiG. 2. Influence of K near the origin.

Moreover, it was found that small values of K
furnish better results in the vicinity of G, =0. At
distant locations from the origin, better results are
obtained for large values of K. Therefore, an
intermediate value of K, say K = 0.4 was attempted.
Additionally, Fig. 2 shows that the bulk fluid
temperature is insensible to changes in K.

To establish the validity of the numerical ap-
proach employing K = 04, a comparison using the
results of Michelsen and Villadsen [11] are presented
in Fig. 3. Small differences observed in the values of
U, for Pe = 10 and oo are attributed to the fact that
the results of [11] are valid for a constant wall
temperature (U, =0). This boundary condition
constitutes a limiting approximation to the present
case Bi = 100, Sk = 0. As a result, Fig. 3 also shows
that U, is not identically zero. Consequently, K
= 0.4 appears to be a reasonable choice and was
adopted for all the calculations.

10
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RESULTS

Some insights into the physical phenomenon of
axial conduction can be gained by comparing the
results with those where axial conduction is ex-
cluded. Numerical calculations for U,, 0,,/Q_,, and
Nu, corresponding to the case of Pe = oo are taken
from Campo and Auguste [16]). This reference
involves viscous heating and does not include axial
conduction, but otherwise makes the same assump-
tions as in the present analysis.

Computed results are presented graphically in
Figs. 4-13. For simplicity, sink temperatures are
maintained at intermediate values of U, = 0.4 and
U, = 0.4, when applicable.

The first set of Figs. 4-9 have common cooling
conditions: Bi =25 and Sk =1 The fluid bulk
temperature U, as a function of the axial distance
G,, having Pe as a parameter is shown in Fig. 4.
Temperature solutions approach those presented in
[16] as Pe increases. This expected behavior implies
that for large Pe, axial conduction does not
contribute significantly to the heat transport me-
chanism. The inset of Fig. 4 tabulates the bulk
temperatures at the origin U,  in terms of Pe. It is
seen that U, = 0.5521 when Pe = 1 which is about
haif of the entrance temperature at G, = —c0.
Figure 5 illustrates the temperature distributions at
G, = 0 that give rise to the previous tabulation. The
effects of axial conduction altering the uniform
temperature pattern at the origin is strongly manifes-
ted. The longitudinal variations of the fluid tempera-
tures for Pe =5, 20 are presented in Fig. 6. The
cooling mechanism affects the temperatures in the
negative part of the tube due to the presence of axial
conduction. It is observed that wall temperatures
deviate considerably from center temperatures as Pe
diminishes. The influence of axial conduction is very
significant near G, = 0 where the heat exchange zone
between the fluid and the surrounding begins. Low
fluid velocities in the vicinity of the wall decreases
the axial convection in the flow direction. This, of
course, induces the axial conduction mechanism
opposite to the flow direction. On the other hand, in
the neighborhood of the tube center, higher fluid

Up, Uw

@

Michelsen
[V
-——-U,

Bi =100
Sk=0
Ug2Uy =0

g | L 1

-Q20

-0i5 -010

) 005 Qo
G,

015 020

FiG. 3. Comparison of numerical results.
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FIG. 4. Bulk temperatures in the upstream and downstream regions.

velocities increase the axial convection downstream.
Hence, the upstream heat conduction is dominated
by the downstream heat convection. As a result,
large and small temperature changes are observed
close to v’ = 1 and r’ = O respectively. Consequently,
the overall effect is expressed in terms of U, which
experience a decrease near the origin as Pe decreases.
Figure 7 demonstrates that axial conduction tends to
increase the length of the thermal entrance region. Of
course, this is based on the assumption that cooling
conditions remain unchanged. Bulk temperatures are

O8k= 20
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c
| T i T
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Us=Uq=04
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Qi

o | L | l
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F1G. 5. Variation of the temperature profile with Pe at
G, =0

strongly affected by Pe and approach asymptotic
values in the thermally developed region. Local heat-
transfer rates calculated from equation (20) are
illustrated in Fig. 8. Total heat fluxes decrease
sharply for small Pe leading to considerable errors
when longitudinal conduction is omitted. Nusselt
numbers associated to the same thermal boundary
conditions are presented in Fig. 9. The temperature
surface of Fig. 10 allows the visualization of the
overall pre-cooling caused by low Péclet number
fluids.

03
Pe =20 mwm o=
oz Pesd ——
Bi=25
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Us’Ua‘OA’
oI
o 1 ] i !
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FiG. 6. Effect of axial conduction on the temperature
distribution.
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F1G. 10. Temperature surface.

It was stated previously that the upstream penet-
ration depends on both the axial conduction and the
cooling level at G,>0. Therefore, for fixed values of
Pe, the penetration distance should decrease as the
cooling level decreases too. Accordingly, temperature
profiles at G, =0 become more uniform. This
tendency is shown in Fig. 11 for the case of radiation

100

095

090

085

080

075

070

Us=04

065

| 1 | |
080 oz o4 06 o8 10

r

F1G. 11. Variationof the temperature profilewith Skat G, = 0

cooling only. Figure 12 shows also the global effect
of radiation cooling for the upstream and down-
stream portions of the tube. As Sk decreases, the
pre-cooling of the negative region decreases too.

The role of axial heat conduction for the case of
uniform wall temperature is noteworthy when Pe
<50[1, 11]. This single number establishes the
border line for the contribution of axial conduction
in entry-region heat-transfer problems. However; for
general boundary conditions, as in the case of
simultaneous convection and radiation, a unique
number is not enough to show the importance of
longitudinal conduction. These situations require the
combined presentation of the parameters responsible
for axial conduction and heat loss at the walls.
Accordingly, it could be interesting to calculate the
critical Péclet numbers as functions of the various
cooling conditions expressed by Biot and/or Stark
numbers. This can be done by drawing the bulk
temperatures at G, =0 and comparing these values
to those where axial conduction is omitted. For the
case of radiation only, Fig. 13 presents the variation
of U,, with Sk having Pe as a parameter. Here, it is
observed that Pe, = 20 when Sk =3 and Pe = 30
when Sk = 8 respectively. The error criterion utilized
corresponds to 3%, used also in [1], although
different criteria can be employed. Likewise, for the
case of convection only, Fig. 14 depicts the re-
lationship between U, and Bi. Using the same error
criterion Pe, = 30 corresponds to Bi = 6. Finally, the
coupled effect of convection and radiation is illus-
trated in Fig. 15 for two situations, Pe =10 and 30.
These three figures are of considerable importance
because they demonstrate that Pe_ increases as the
heat dissipation increases. Moreover, Pe_— 50 for the
limiting condition of constant wall temperature. This
value was calculated by Michelsen and Villadsen

[11].
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CONCLUSIONS tion at low Péclet number, Appl. Scient. Res. 25,

A numerical scheme has been developed for
calculating the entry-region heat transfer in axially
conducting fluids through circular tubes. The in-
teraction of axial conduction and the parallel cooling
by convection and radiation at the walls was fully
investigated. Convergence of the numerical solution
is assured by comparing the results of the present
problem with those considering limiting cases.

The different thermal effects of axial conduction on
the convection phenomenon depends not only on the
magnitude of Pe but also on the magnitude of Bi
and/or Sk. Thus, the wall heat flux decreases along
the axial distance from the origin as the influence of
axial conduction increases. Moreover, the role of
axial conduction on the bulk temperature is stronger
when the heat liberation is increased..It must be
emphasized that the contribution of axial conduction
can be neglected even when Pe< 5 depending on the
cooling intensity between the fluid and the environ-
ment. Therefore, for these situations the hypothesis
of uniform temperature at the origin could be valid
and the mathematical model of the problem greatly
simplified.
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CONDUCTION AXIALE DANS LES ECOULEMENTS LAMINAIRES
AVEC DES FLUX THERMIQUES NON LINEAIRES SUR LA PAROI DU TUBE

Résumé—On développe une analyse numérique pour déterminer les paramétres de transfert thermique
d’un écoulement de fluide rejetant vers l'extérieur de la chaleur par conduction et par rayonnement.
L’influence de la conduction axiale est incluse et le profil de vitesse est pris non uniforme dans la direction
transversale. L'utilisation d’une transformation élimine les conditions aux limites requises a I'infini. Des



Axial conduction in laminar pipe flows with nonlinear wall heat fluxes

techniques numériques approchées sont exploitées pour résoudre le probléme non linéaire conjugué.

Lorsque le nombre de Péclet augmente, le champ de température se réduit 4 celui relatif a la conduction

axiale nulle. Les résultats du calcul montrent que les effets de la conduction axiale sont fortement altérés

par les paramtres traduisant la convection et le rayonnement. Les températures du fluide, les flux

thermiques pariétaux et les nombres de Nusselt sont donnés graphiquement en fonction du nombre de

Graetz. On présente les nombres de Péclet critiques pour une variété de conditions de refroidissement en
prenant comme référence la température moyenne de mélange du fluide.

AXIALE WARMELEITUNG IN LAMINAREREN ROHRSTROMUNGEN MIT
NICHTLINEAREN WANDWARMESTROMEN

Zusammenfassung—Fiir eine Fliissigkeitsstromung, die an das umgebende Medium durch Konvektion
und Strahlung Wirme abgibt, ist eine numerische Berechnungsmethode entwickelt worden, um die
Parameter der Wirmeiibertragung zu bestimmen. Der Einflul der axialen Wirmeleitung und des in
radialer Richtung ungleichférmigen Geschwindigkeitsprofils wird dabei beriicksichtigt. Die Anwendung
einer Transformation eliminiert die sonst erforderliche Beriicksichtigung von unendlichen Randbed-
ingungen. Numerische Niherungsmethoden wurden zur Losung des nichtlinearen konjugierten Problems
angewandt. Bei Zunahme der Péclet-Zahl vereinfachen sich die Temperaturfelder auf Formen, bei
welchen axiale Leitung unberiicksichtigt bleibt. Die errechneten Ergebnisse zeigen, daB die Einfliisse der
axialen Wirmeleitung stark von den Parametern abhingen, die fiir Konvektion und Strahlung
verantwortlich sind. Mittlere Fluidtemperaturen, Wandwarmestrome und Nusselt-Zahlen werden in
Abhingigkeit von Graetz-Zahlen aufgetragen. Kritische Péclet-Zahlen mit der mittleren Fluidtemperatur
als Bezugsgrofe werden fiir verschiedene Kithlbedingungen angegeben.

OCEBAS TEIJIONPOBOAHOCTb JJAMUHAPHbBIX MOTOKOB B TPYBAX IMPU
HEJIMHEWHBIX M'PAHHUYHBIX YCIOBUAX HA CTEHKAX

" Annotams — Pa3paboTaH uHCIeHHBI METO ANA ONPEACNCHUA TEMACOTARYH OT NMOTOKA KHAKOCTH
B OKPYXAIOLLYIO Cpelly KOHBeKLUEH u u3ayyeHHeM. PaccMaTpuBaeTca BIMAHKE OCEBOH TENAORPOBOA-
HOCTH MPH HEOZHOPOAHOM NpodMie CKOPOCTH B TNONEpPEHHOM ceveHun TpyOul. Wcnonwiosanue
npeobpazosanus cHUMaeT TpeGoBaHHe 3aJaHHUA rPaHHYHBIX YCIOBHI HA GeckonewHocTH. Henuneltnas
CONpsHKEHHas 3aja4a pewanach C MOMOLLBI NPUOMHKEHHBIX UYHCIEHHbIX MeTonoB. flo mepe
yBenuyeHus 4ucaa lexne TemnepatypHbie noas TPaHCHOPMUPYIOTCA B TeMmrepaTypHbie nons 6Ge3
BJMAHKA 0CEBOH TENnoOnpoBoaHOCTH. MoNydeHHbIE pe3ynbTaThl NOKa3biBAlOT, YTO BAMSHHE OCEBOMH
TENNONPOBOAHOCTH CHIILHO 3ABHCHT OT MAapaMeTpPOB, XaPaKTEPHU3IYIOLNX KOHBEKLIHIO W HITyYEHHE,
MpuBoAKTCA IaBUCUMOCTL OOBEMHBIX TEMMEPaTyp KHAKOCTH, MPHCTEHHBIX TEMIOBLIX NOTOKOB H
uyucen Hyccensta or uncen prytua. Kputnueckue uucna Hycceasta ans uenorc psaaa ycrosuit

OXNIAXKACHUA AAOTCA NO 06BbEMHON TemNepaType KHIKOCTH.
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