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Abstract-A numerical analysis to determine the heat-transfer parameters of a fluid flow rejecting heat to 
the surrounding medium by convection and radiation is developed. The influence of axial conduction is 
included and the velocity profile is taken as nonuniform in the transverse direction. Use of a 
transformation eliminates the required boundary conditions at infinity. Approximate numerical 
techniques are employed to solve the nonlinear conjugate problem. As P&let number increases, the 
temperature fields simplify to those where axial conduction is excluded. The computed results indicate 
that the effects of axial conduction are strongly altered by the parameters responsible for the convection 
and radiation. Bulk fluid temperatures, wall heat fluxes and Nusselt numbers are plotted against Graetz 
numbers. Critical P&let numbers for a variety of cooling conditions are presented using the bulk fluid 

temperature as a reference. 

NOMENCLATURE 

A*,B*, coefficients in equation (13); 
Bi, 

D, 

6 

h, 

h’, 

k, 

K 

L, 

M, 

N, 

Nu, 

Pe, 

47 

Q, 
r, 
I, 
R, 

:k, 

T, 

u, 

v, 

vlll, 
z, 

Biot number, hR?k; 

tube diameter [m] ; 
Graetz number, z/RPe; 

external convection coefficient 
[W/m’“C] ; 
internal convection coefficient 
[W/m*“C] ; 
fluid thermal conductivity [W/m”C] ; 
transformation constant in equation (12); 
number of axial increments; 
number of radial increments; 
number of equations, M x L ; 
Nusselt number, h’D/k; 

P&let number, sDv,/k; 

heat flux; 
dimensionless heat flux, qR/kT,; 

radial distance [m] ; 
normalized radial distance, r/R ; 
tube radius [m] ; 
volumetric heat capacity [kJ/m3”C] ; 
Stark number, eaRT,3/k; 

absolute temperature when radiation 
is present [“K] ; 
normalized temperature, T/T, ; 
velocity [m/s] ; 
mean velocity [m/s] ; 
axial distance [ml. 

Greek symbols 

E, tube emissivity; 

ton leave from the University of Puerto Rico, Maya- 
giiez, Puerto Rico, U.S.A. 

convergence criterion ; 
normalized axial distance in 
equation (12) ; 
Stefan-Boltzmann constant 
[W/m* K4]. 

Subscripts 

4 
b 

C, 
e, 
I, 
.I. 
WV 
L, 
s, 
W, 
0, 

convection sink; 
bulk ; 
critical ; 
entrance ; 
value at the axial position ; 
value at the radial position; 
value at the node; 
local ; 
effective radiation sink; 
wall ; 
origin. 

INTRODUCTION 

THE CONTRIBUTION of axial heat conduction plays a 
significant role in the analysis and design of heat- 
transfer equipment using low P&let number fluids. 
Although there is an extensive literature dealing with 
this particular problem, its mathematical repre- 
sentation had not been established with certainty 
until recently. The apparently conflicting trends of 
the initial studies are summarized and examined in a 
publication by Hennecke [l] in 1968. He stated that 
the problem cannot be formulated by simply adding 
the axial conduction term to the energy equation 
while using a semi-infinite duct with a uniform inlet 
temperature. This dilemma is attributed to the fact 
that the unrealistic boundary condition at the origin 
z = 0 negates the conduction of heat upstream of the 
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entrance point. Therefore, since the temperature at 
z = 0 is not known a priori, it is necessary to employ 
the geometry of an infinite duct where the tempera- 
ture is constant at z = -co. Thus, a complete 
solution of the properly posed problem requires 
additional consideration of the energy equation. This 
modification adds drastic computational difficulties 
to the solution of the problem. 

Utilizing a finite difference procedure Hennecke 
[l] solved the governing energy equation for a 
Poiseuillian flow through circular tubes in the 
infinite region - co < z < co. His numerical results 
are applicable for two different sets of thermal 
boundary conditions, i.e. the uniform wall tempera- 
ture and the uniform heat flux. Both conditions show 
the customary discontinuities at the origin. The 
distorted temperature profiles are illustrated in a 
group of curves assessing the importance of the axial 
conduction phenomenon. 

Subsequent publications related to this problem 
have been concerned basically with different math- 
ematical treatments involving variations of the 
same boundary conditions used in [l]. Jones [2-41 
presented a theoretical solution based on the 
application of a two-sided Laplace transform and 
obtained both the upstream and downstream tem- 
perature fields. Two separate cases dealing with 
boundary conditions of the first and second kind 
were investigated. Deavours [5] found an exact 
solution for the temperature profile of a fluid flow 
between parallel plates. One semi-infinite portion of 
the plate walls is maintained at a fixed temperature 
while the other is maintained at a different fixed 
temperature. 

A mathematical scheme for solving the convection 
problem with a step change in wall heat flux at z = 0 
was devised by Hsu [6, 7-j. The scheme consists in 
matching the temperature distributions calculated 
for the regions z<O and z>O respectively. To 
accomplish this process the Gramm-Schmidt ortho- 
normalization technique was employed. For the 
case of flow inside a circular pipe the scheme yields 
Nusselt numbers that agree with those reported in 
[l]. An analytical procedure equivalent to that of 
Hsu was presented by Davis [8] for the situation of 
fixed heat flux at the walls. The solution was 
expressed in terms of the confluent hypergeometric 
function. Pearson and Wolf [9] examined the 
situation of a three zone channel formed by two 
infinite planes. The walls of the inlet and exit zones 
are adiabatic but the central zone has an axially- 
dependent heat flux. They obtained numerical ap- 
proximations developed through the application of 
finite element methods. Smith et al. [IO] extended 
the system considered in [6] and accounted for 
internal energy sources. The wall heat flux varies 
around the circumference but is unaltered in the 
axial direction except for a single discontinuity. A 
series solution exploits the orthogonality relationship 
among solution components. 

The following investigators employed a different 

set of thermal boundary conditions. Michelsen and 
Villadsen [ll] analyzed the problem of heat transfer 
for Poiseuille flow under the assumption that the 
tube wall is kept insulated upstream of the origin 
and at a constant temperature downstream. The 
partial differential equation was solved by a method 
based on a combination of orthogonal collocation 
and matrix diagonalization. The model of plug flow 
was used by Jerri and Davis [12] to show that the 
problem given in [l l] can be solved by applying the 
generalized sampling theorem. As a result, it pro- 
vides a relation for the coefficients of the temperature 
fields in the two domains. Sorensen and Stewart [13] 
reformulated the situation presented by [9], but in 
this case, the central segment of a circular duct was 
maintained at a constant temperature. Approximate 
solutions for the temperature profile were obtained 
through the use of a collocation procedure. A 
numerical solution that avoids the boundary con- 
dition at infinity was developed by Verhoff and 
Fisher [14]. The inverse-tangent transformation 
converts the axial boundary conditions into coor- 
dinates located at finite distances from the origin. 
Constant-wall-temperature and insulation constant- 
wall-temperature cases were investigated. 

All of these investigations [l-14] have contributed 
to the qualitative description of the Graetz problem 
accounting for longitudinal conduction. It is interest- 
ing to note that linear thermal boundary conditions 
imposed on the walls have been limited to situations 
involving constant temperature and constant or 
position-dependent heat fluxes. Examination of the 
literature shows that there are fields of application 
where these simple thermal boundary conditions do 
not apply [15]. Therefore, it suggests a need for a 
better understanding of the heat transfer encoun- 
tered when more general conditions are essential. It 
is important to mention that the case of constant 
temperature is valid only when the tube flow is 
exposed to a high intensity of external forced 
convection. However, for intermediate external con- 
vection, heat transfer calculations made previously 
are not related to low P&let number fluids. 
Moreover, increases in operating temperatures have 
reached the point where the heat flux levels are not 
adequately described by convection alone. Under these 
circumstances, convective-radiative boundary con- 
ditions need to be used. Here again, heat-transport 
calculations have been restricted to flows where the 
axial conduction is absent. 

The present work solves the laminar convection 
problem including the effects of axial fluid con- 
duction. General thermal boundary conditions ac- 
counting for the simultaneous role of convection and 
radiation downstream of the origin are employed. 
The upstream part of the origin is maintained 
insulated. Solutions are obtained by solving numeri- 
cally the partial differential equation governing the 
resulting nonlinear conjugate problem. The implicit 
formulation gives rise to a system of nonlinear 
algebraic equations. This system is solved by the 
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FIG. 1. Physical problem. 

combined use of the Gauss-Seidel and 
Newton-Raphson iterative techniques. Heat-transfer 
parameters evaluated from the present study are 
compared with limiting results in order to test the 
generality of the model. in the presentation of 
results, the influence of thermal radiation and 
external convection on the axial conduction are 
examined in detail. 

PHYSICAL FORMU~TIO~ 

The analysis is based on a f&y developed laminar 
flow of a viscous fluid with axial conduction in a 
circular tube. The upstream part of the tube from z 
=-- co to z = 0 is insulated while its downstream 
part from z = 0 to z = m is allowed to exchange 
heat with the su~oundings. This exchange occurs by 
a combined mechanism of radiation and convection. 
The incompressible fluid with constant properties 
enters the tube at z = --oo having a uniform 
temperature T,. The heat flux at the wall surface is 
zero for z<O, and at the origin there is a step change 
in heat flux becoming nonlinear for z&O. Referring 
to the coordinate system shown in Fig. 1, the 
temperature distribution for - co -=I z< 03 is de- 
termined by solving the energy conservation equa- 
tion for the fluid 

s dT d2T 1 dT a2T 
-v-=-+-~-f----- k ciz dr2 r cr 82’ 

(1) 

where the Hagen-Poiseuille velocity profile is ex- 
pressed by 

v/2v,,, = 1 - (r/R)‘. (2) 

The approp~ate boundary conditions for the 
conjugate problem are 

T= T, z = -co,O<r<R (3) 

aT 
-=0 z<O,r=R 
& 

(4) 

dT 
-=o -m~zzcfJ,r.=o 
& (5) 

-kg=h(T-q)+m(T4-T4) z>O,r=R(6) 

Z=O z= m,O<r<R. (7) 

It is known that the uniform temperature boundary 

condition at z = 0 is physically unrealistic for 
situations involving axial conduction. According to 
inv~tigations by Hennecke [I] and Michelsen and 
Villadsen [l 11, the heat conducted upstream of z = 0 
is significant when Pe = 50 and 20 for constant wall 
temperature and constant wall heat flux respectively. 
Therefore, for these situations the phenomenon of 
axial heat conduction is dictated by a single critical 
value of the deciding parameter Pe. However, a 
completely different state of affairs occurs when the 
upstream conduction is affected by the simultaneous 
presence of convection and radiation in the down- 
stream region. For this general case, the critical 
values of the P&let number are strongly affected by 
the combination of external convection, radiation 
and the temperatures of the convective and radiative 
sinks respectively. Equation (6), written for a general 
case of coupled heat flow, reduces to the particular 
cases of either constant wall temperature or constant 
wall heat flux in the downstream region [l-S, 
11-141. Since in general the sink temperatures are 
different, equation (7) permits the calculation of the 
corresponding equilibrium temperature at z = co. 
The equilibrium temperature at this location is 
independent of the hypothesis of axial conduction. 

The temperature solutions of equations (l)-(7) 
permit the computation of certain thermal quantities 
of practical interest. First, the bulk fluid tem~rature 
is defined as 

I 

R 
Tvr dr 

&= OR 

I 

-Kl<Zgf. (8) 

vrdr 
0 

Meanwhile, the wall temperature T, introduced in 
equation (6) permits the direct evaluation of the wall 
heat flow 

q, = h(Tw-T,)+m(T,4-1;4) z>O. (9) 

Consequently, the expression for the Nusselt number 
may be written in terms of qw as follows 

Nu - h’D - D qw 
k k (G-T,) “’ 

(10) 

where h’ denotes the internal convection coefficient. 
By introducing the normalized variables r’ = r/R, 

U = T/T, and the P&let number Pe = sDy,/k the 
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energy equation (1) becomes 

To complete the set of dimensionless variables in 
equation (ll), the axial position z will be transfor- 
med according to the relation employed in [ 141: 

(12) 

where K is a transformation constant. This manipu- 
lation has the advantage that not only the new axial 
position is dimensionless; but more im~rtant, the 
boundary conditions at z = + co are now converted to 
finite locations at rl = f0.5. The role of this 
transformation is especially significant when numerical 
methods are attempted. Using the chain rule for 
derivatives and after rearranging terms, equation (11) 
may be rewritten in the following form 

(13) 

where 

A* = -z(wf 
K7t C sin (27rq) 

Pe(1 -f’*)fT 1 
and 

Likewise, the boundary conditions are expressed 
as 

U = 1 q = -O.S,O<r’<l 

au 

(14) 

- = 0 -O.S<q<O, r’ = 1 
W (15) 

au-0 
; :. 

??- 
-OS,<r1<0.5, r’ A 0 (16) 

-g = BI’(U- U,)+Sk(U4- v:, 

oc~~os,r = 1 (17) 

E=O ~=OS,O<r’<l. (18) 

The existence of the axial conduction term and the 
presence of variable coefficients in equation (13), 
combined with the nonlinear boundary condition of 
equation (17) imply that exact mathemati~l tech- 
niques are not amenable. Therefore, the temperature 
field will be computed via the calculus of finite 
differences. 

In terms of the adopted normalized variables, the 
expression for the fluid bulk temperature becomes 

-os<n<os. (19) 

This equation is integrated by numerical procedures 
using Simpson’s rule. Next, the wall heat flow can be 

obtained from the relation 

QW Bi(U,- U,)+Sk(U:- U:, 
--= Bi(l-U,)+Sk(l-U;) Q-.x 

rj>,o. (20) 

Finally, the Nusselt number is rewritten as follows 

COMPUTATIONAL METHOD 

The finite-difference formulation of equation (13) 
along with the associated boundary conditions, 
equations (14)-(18) were solved numerically on a 
digital computer. It is known that the energy 
equation accounting for axial conduction effects is 
classified as elliptic. Hence, its representation in 
difference form is carried out by means of the implicit 
technique. Consequently, a system of nonlinear 
algebraic equations is generated due to the 
convection-coupled radiation boundary condition in 
the downstream region. 

The tube was divided into rectangular cells, and 
the radial and axial divisions being designated by Ar’ 
and Arl respectively. The subindices i and j are 
assigned to the radial and axial directions re- 
spectively. Using this notation, the central difference 
analog is utilized for the conversion of all derivatives 
appearing in equations ( 13)-( 18). 

Therefore, a nonlinear system of equations consist- 
ing of N = M x L equations is generated. The 
numerical approach employed for its solution is 
based on the Gauss-Seidel method and the 
Newton-Raphson method. The accuracy of the 
iteration procedure was influenced by three factors: 
the convergence criterion alOEa,, the grid size M x L 
and the transformation constant K given by equa- 
tion (12). Using limitln~ cases for the physical 
problem, it was possible to arrive at the numerical 
values of eloca,, M x L and K that assure reliable 
results. The cases tested correspond to combinations 
of low axial conduction (Pe = 30) or high axial 
conduction (Pe = 1) with high cooling levels (Bi 
= 20 and Sk = 10) or low cooling levels (Bi = 1 and 
Sk = I). The selected value for E,~,~~,, corresponds to a 
small change in each nodal temperature between two 
consecutive iterations and is given by cloca, <O.OOlY;. 

For Pe = 1 and Bi = 20, Sk = 10 the calculated 
results do not exhibit appreciable discrepancies using 
grid sizes of 10 x 40, 20 x 40 and 10 x 60 respectively. 
On the other hand, for Pe = 30 with the same 
cooling conditions, good convergence is achieved for 
a grid of 10 x 60 only. Consequently, a grid with 10 
radial intervals and 60 axial intervals along with a 
local convergence criterion c,~~,, = O.OOlp<, seemed to 
yield accurate results for computation purposes. 
These quantities are used to determine an approp 
riate value for the transformation constant K. When 
K = 0.2 and 1.0, Fig. 2 reveals that minor variations 
of wall temperatures take place in the neighborhood 
of G, = 0. It is also observed that the variations tend 
to disappear at points distant from the origin. 
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RESULTS 

Some insights into the physical phenomenon of 
-\+_ 
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‘F 
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- -1-K-02 
- K-l.0 

pe=lO 
Bi=lOO 

Sk=0 
UP&=0 

axial conduction can be gained by comparing the 
results with those where axial conduction is ex- 
cluded. Numerical calculations for U,, Q,/Q-, and 
Nu, corresponding to the case of Pe = co are taken 
from Campo and Auguste [16]. This reference 
involves viscous heating and does not include axial 
conduction, but otherwise makes the same assump 
tions as in the present analysis. 

Computed results are presented graphically in 
Figs. 4-13. For simplicity, sink temperatures are 
maintained at intermediate values of U, = 0.4 and 
U, = 0.4, when applicable. 

GZ 

FIG. 2. Influence of K near the origin. 

Moreover, it was found that small values of K 
furnish better results in the vicinity of G, = 0. At 
distant locations from the origin, better results are 
obtained for large values of K. Therefore, an 
intermediate value of K, say K = 0.4 was attempted. 
Additionally, Fig. 2 shows that the bulk fluid 
temperature is insensible to changes in K. 

To establish the validity of the numerical ap 
preach employing K = 0.4, a comparison using the 
results of Michelsen and Villadsen [ 1 l] are presented 
in Fig. 3. Small differences observed in the values of 
U, for Pe = 10 and co are attributed to the fact that 
the results of [ll] are valid for a constant wall 
temperature (U, = 0). This boundary condition 
constitutes a limiting approximation to the present 
case Bi = 100, Sk = 0. As a result, Fig. 3 also shows 
that U, is not identically zero. Consequently, K 
= 0.4 appears to be a reasonable choice and was 
adopted for all the calculations. 

The first set of Figs. 4-9 have common cooling 
conditions: Bi = 2.5 and Sk = 1. The fluid bulk 
temperature U, as a function of the axial distance 
G,, having Pe as a parameter is shown in Fig. 4. 
Temperature solutions approach those presented in 
[16] as Pe increases. This expected behavior implies 
that for large Pe, axial conduction does not 
contribute significantly to the heat transport me 
chanism. The inset of Fig. 4 tabulates the bulk 
temperatures at the origin U,, in terms of Pe. It is 
seen that Ub, = 0.5521 when Pe = 1 which is about 
half of the entrance temperature at G, = -co. 
Figure 5 illustrates the temperature distributions at 
G, = 0 that give rise to the previous tabulation. The 
effects of axial conduction altering the uniform 
temperature pattern at the origin is strongly manifes- 
ted. The longitudinal variations of the fluid tempera- 
tures for Pe = 5, 20 are presented in Fig. 6. The 
cooling mechanism affects the temperatures in the 
negative part of the tube due to the presence of axial 
conduction. It is observed that wall temperatures 
deviate considerably from center temperatures as Pe 
diminishes. The influence of axial conduction is very 
significant near G, = 0 where the heat exchange zone 
between the fluid and the surrounding begins. Low 
fluid velocities in the vicinity of the wall decreases 
the axial convection in the flow direction. This, of 
course, induces the axial conduction mechanism 
opposite to the flow direction. On the other hand, in 
the neighborhood of the tube center, higher fluid 

a2 - 

FIG. 3. Comparison of numerical results. 
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FIG. 4. Bulk temperatures in the upstream and downstream regions. 

velocities increase the axial convection downstream. strongly affected by Pe and approach asymptotic 

Hence, the upstream heat conduction is dominated values in the thermally developed region. Local heat- 

by the downstream heat convection, As a result, transfer rates calculated from equation (20) are 

large and small temperature changes are observed illustrate in Fig. 8. Total heat fluxes decrease 

close to r’ = 1 and T’ = 0 respectively. Consequently, sharply for small Pe leadin’g to considerable errors 

the overall effect is expressed in terms of U, which when longitudinal conduction is omitted. Nusselt 

experience a decrease near the origin as Pe decreases. numbers associated to the same thermal boundary 

Figure 7 demonstrates that axial conduction tends to conditions are presented in Fig. 9. The temperature 

increase the length of the thermal entrance region. Of surface of Fig. 10 allows the visualization of the 

course, this is based on the assumption that cooling overall pre-cooling caused by low P&let number 

conditions remain unchanged. Bulk temperatures are fluids. 

Of - 

06 - 

81=2.5 
Sk=1 
u,=u~=o4 

FIG. 5. Variation of the temperature profile with Peat 
G, = 0. 

03 

t Pe=20 I--- 

02 

t 

%a5 - 
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FIG. 6. Effect of axiaf conduction on the temperature 
dist~bution. 
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FIG. 7. Bulk temperatures in the downstream region. 
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FIG. 8. Heat fluxes in the down&treaqvfegion. 
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FIG. 9. Nusselt numbers in the downstream region. 
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Pe=lO B1=25 
Sk=5 
Us = Ua=04 
Un-.- 

U 06 

FIG. 10. Temperature surface. 

It was stated previously that the upstream penet- 
ration depends on both the axial conduction and the 

cooling level at G, > 0. Therefore, for fixed values of 
Pe, the penetration distance should decrease as the 
cooling level decreases too. Accordingly, temperature 

profiles at G, = 0 become more uniform. This 
tendency is shown in Fig. 11 for the case of radiation 

085 - 
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070 - 

065 - 

‘\ \ \ h 2 

\ 
Sk=10 \ 

I’ 
\ 

Pa=30 - 

pez20 --- 

BI = I 
uo=o 
us=04 

Frc. 11. Variatlonofthe temperatureprofilewlthskat G, = 0 

cooling only. Figure 12 shows also the global effect 

of radiation cooling for the upstream and down- 
stream portions of the tube. As Sk decreases, the 

pre-cooling of the negative region decreases too. 
The role of axial heat conduction for the case of 

uniform wall temperature is noteworthy when Pe 
< SO[l, 111. This single number establishes the 
border line for the contribution of axial conduction 

in entry-region heat-transfer problems. However : for 
general boundary conditions, as in the case of 
simultaneous convection and radiation, a unique 
number is not enough to show the importance of 
longitudinal conduction. These situations require the 
combined presentation of the parameters responsible 
for axial conduction and heat loss at the walls. 
Accordingly, it could be interesting to calculate the 

critical P&let numbers as functions of the various 
cooling conditions expressed by Biot and/or Stark 
numbers. This can be done by drawing the bulk 
temperatures at GL = 0 and comparing these values 
to those where axial conduction is omitted. For the 
case of radiation only, Fig. 13 presents the variation 
of U,(, with Sk having Pe as a parameter. Here. it is 

observed that Pe, = 20 when Sk = 3 and Pe, = 30 
when Sk = 8 respectively. The error criterion utilized 

corresponds to 39; used also in [l], although 
different criteria can be employed. Likewise. for the 
case of convection only, Fig. 14 depicts the re- 
lationship between U,, and Bi. Using the same error 
criterion Pe, = 30 corresponds to Bi = 6. Finally, the 
coupled effect of convection and radiation is illus- 
trated in Fig. 15 for two situations, Pe = 10 and 30. 
These three figures are of considerable importance 
because they demonstrate that Pe, increases as the 
heat dissipation increases. Moreover, Pep50 for the 
limiting condition of constant wall temperature. This 
value was calculated by Michelsen and Villadsen 

lI111. 
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FIG. 12. Axial dependence of bulk temperatures with Sk. 
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FIG. 13. Bulk temperatures at G, = 0 depending on Sk. 
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'IG. 14. Bulk temperatures at G, = 0 depending on Bi. 
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ubo Pa=30 - 
Pe= IO --- 

U.=Ua=04 

060, ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ I 
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Bi ‘O 
15 

20% 

FIG. 15. Bulk temperatures at G, = 0 depending on Sk and Bi. 

CONCLUSIONS 

A numerical scheme has been developed for 
calculating the entry-region heat transfer in axially 
conducting fluids through circular tubes. The in- 
teraction of axial conduction and the parallel cooling 
by convection and radiation at the walls was fully 
investigated. Convergence of the numerical solution 
is assured by comparing the results of the present 
problem with those considering limiting cases. 

The different thermal effects of axial conduction on 
the convection phenomenon depends not only on the 
magnitude of Pe but also on the magnitude of Bi 
and/or Sk. Thus, the wall heat flux decreases along 
the axial distance from the origin as the influence of 
axial conduction increases. Moreover, the role of 
axial conduction on the bulk temperature is stronger 
when the heat liberation is increased. j It must be 
emphasized that the contribution of axial conduction 
can be neglected even when Pe < 5 depending on the 
cooling intensity between the fluid and the environ- 
ment. Therefore, for these situations the hypothesis 
of uniform temperature at the origin could be valid 
and the mathematical model of the problem greatly 
simplified. 
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CONDUCTION AXIALE DANS LES ECOULEMENTS LAMINAIRES 
AVEC DES FLUX THERMIQUES NON LINEAIRES SUR LA PAR01 DU TUBE 

R&m-n developpe une analyse numtrique pour determiner les paramitres de transfert thermique 
dun bcoulement de fluide rejetant vers l’exterieur de la chaleur par conduction et par rayonnement. 
L’influence de la conduction axiale est incluse et le profil de vitesse est pris non uniforme dans la direction 
transversale. L’utilisation dune transformation tlimine les conditions aux limites requises a l’infini. Des 



Axial conduction in laminar pipe flows with nonlinear wall heat fluxes 

techniques numeriques approchees sont exploitees pour rt!soudre le probitie non lintire conjugub 
Lorsque le nombre de PMet augmente, le champ de temperature se reduit a celui reiatif a la Conduction 
axiale nulle. Les resultats du calcul montrent que les effets de fa conduction axiaie sont fortement a&C&s 
par les pararhtres traduisant la convection et le rayonnement. Les temperatures du flu&, les flux 
thermiques parietaux et les nombres de Nusselt sont donnb graphiquement en fonction du nombre de 
Graetz. On prtsente les nombres de P&let critiques pour une variett de conditions de refroidissement en 

prenant comme reference la temperature moyenne de melange du fluide. 
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AXIALE WARMELEITUNG IN LAMINAREREN ROHRSTRGMUNGEN MIT 
NI~~LINEAREN WANDW~RMESTR~MEN 

~~f~-F~ eine ~~si~eitsstr~mung, die an das umgebende Medium durch Konvektion 
und Strahlung W&me abgibt, ist eine numerische Ber~hn~g~eth~e entwickelt worden, um die 
Parameter der W~e~~rtrag~g zu bestimmen. Der EinfluD der axialen W&meleitung und des in 
radialer Richtung ungIeichf6rmigen Geschwindigkeitsprofils wird dabei berilcksichtigt. Die Anwendung 
einer Transformation eliminiert die sonst erforderliche Beriicksichtigung von unendlichen Randbed- 
ingungen. Numerische Niiherungsmethoden wurden zur Losung des nichtlinearen konjugierten Problems 
angewandt. Bei Zunahme der Piclet-Zahl vereinfachen sich die Temperaturfelder auf Formen, bei 
welchen axiale Leitung unberiicksichtigt bleibt. Die errechneten Ergebnisse zeigen, daO die Einfliisse der 
axialen Wiirmeleitung stark von den Parametem abh%ngen, die fur Konvektion und St&lung 
verantwortlich sind. Mittlere Fluidtemperaturen, WandwarmestrGme und Nusselt-Zahlen werden in 
Abhangigkeit von Graetz-Zahlen aufgetragen. Kritische P&let-Zahlen mit der mittleren Fluidtemperatur 

als Bezugsgr6Be werden fiir verschiedene Kiihlbedingungen angegeben. 

OCEBA5l TE~~On~BO~H~b ~AM~HApHblX llOTOKOB B TPYfiAX HPM 
H~~~E~HblX rPAH~~HbIX YCJlOBMItX HA CTEHKAX 

’ A~~~~ovar.rsni - Pa3pdOTaH WCneHHbik MeTOll LWR Oii~~eJleHSiR TellnOOTAaYH OT IlOTOKa XWIKOCTH 

B oKpymatouyt0 cpeny KoiiaeKweA H ti3nyreHHer-4. Paccfbiarpnaaercr BnnnHHe oceeoR TennonporiOR- 

HOETW np~ HeoakiopontfoM npo&ine CK~~~CTH B nonepewoiv ceveHwi TpyBbi. Mcnonb3oeatwe 

npeo6pa3OBaHHR CHHMaeT Tpe6onaHHe 3aLlaHHR rpaHll’IHblX yCflOBHli Ha 6eCKOHeYHOCTH. HenHHeRHaSI 

COIIpmKeHHaSl 3aLlaW ~UlWlaCb C rlOMOUlbtO npH6nHXCeHHblX ‘IHCneHHblX MeTOROB. t-l0 Mepe 

yeenn4eHBn rBcna fleBne TeMnepaTypHbfe norm TpaticI$oprmpyfoTcn B TeMnepaTypHble nom 6e3 

BJlHBHBR OCeBOti TenflOflpOBOnHOCTB. nOny’leHHble pe3ynbTaTbl nOKa3blBaK)T. ‘4TO BJlHRHHe OCeBOR 

TennOlipOBO~HOCTH CHflbHO 3BBNCHT OT fIapaMeTpOB, XapaKTefNi3ylOlUHX KOHBeKUHlO H H3Jiy’JeHHe. 

,-fpHBORHTCR 3aBHCHMOCTb 06tiMHblX TeMnepaTyp )KWJlKOCTH, IlpHCTeNHblX TellnOBblX IIOTOKOS H 

wcen HyccenbTa 0T wfcen rp3TUa. KpHTiiqeCKHe wcna iiycce.wbTa an83 uenoro pnna ycnoe~Ei 

0XnamaeHm namTcs no 065bt~~oii Tewieparype ~HIIKOCTH. 


